蠕变荷载 - CAESAR II - 帮助

CAESAR II 用户指南

Language
中文 (大陆)
Product
CAESAR II
Search by Category
帮助
CAESAR II Version
12

蠕变是固体材料在机械应力下出现的缓慢、永久变形。在高温情况下,当材料长期暴露于低于材料屈服强度的高水平恒定应力情况下会发生蠕变。动力锅炉管道就是承受蠕变荷载管道的一个典型示例。

材料

在高温下,蠕变会控制材料的许用应力属性。由蠕变控制的许用值(也称为与时间相关的许用值)是荷载持续时间的函数。

ASME B31.3 和 ASME B31.1 的默认材料许用值是基于 100,000 小时的。

蠕变寿命因 EN-13480 材料而异,如以下示例所示。CAESAR II 在材料名称中包括了蠕变寿命。

对于材料 1.0345S-16-100 (在 CAESAR II 中材料编号为 406 ):

  • 16 —— 代表最大厚度为 16mm。

  • 100 —— 表示许用值为 100,000 小时持续时间下对应的值,该值为 CAESAR II 的默认值。

对于材料 1.0345S-16-200 (在 CAESAR II 中材料编号为 468):

  • 16 —— 代表最大厚度为 16mm。

  • 许用值为 200,000 小时持续时间下对应的值。

如果对应于所需荷载持续时间的材料许用值不可用,则可以使用所需的数据创建新的自定义材料。

计算

软件根据 EN-13480 公式 12.3.5-1 计算蠕变应力:

s5 = Pcdo/4en + 0.75iMA/Z + 0.75iMC/3Z £ fCR

式中:

Pc = 计算压力(SUS)

MA = 重量和其他持续机械载荷(SUS)产生的合力矩

MC = 热膨胀和交变荷载(EXP)产生的合力矩

fCR = 热态许用应力

在 CAESAR II 中,蠕变应力(CRP)是一个持续工况(SUS)和一个膨胀工况(EXP)的标量组合。方程的前两项是持续应力分量,第三项是膨胀应力分量。

根据公式,用户不需要指定额外的荷载乘子来实现蠕变,如以下荷载工况编辑器示例中所示。而如果指定了额外的荷载乘子,则软件会将这些作为附加的比例因子使用。

软件在许多其他支持的管道规范中也实现了的 EN-13480 蠕变方法。

SIF 方法

CAESAR II 考虑了 EN-13480 蠕变的单 SIF 和双 SIF 方法。对于双 SIF 方法:

SbA = [(iiMi)2+(ioMo)2]1/2/Z. (由于来自持续荷载工况的一次荷载)

SbC 被定义为 SbA,在使用来自热胀荷载工况的合成力矩范围时除外。

s5 = Pcdo/4en + SbA + SbC/3 < fCR

荷载工况编辑器

CAESAR II 不会自动推荐蠕变荷载工况,因此必须使用 CRP 应力类型手动创建蠕变荷载工况。用户可以根据需要为每个应变范围定义蠕变应力范围。

以下荷载组示例中包含两个压力(P1 和 P2)和两个温度(T1 和 T2)。T2 处于蠕变范围内。

  • 两种蠕变荷载工况(L9 和 L10)与在 T2 下的 P1 和 P2 操作工况相对应。

  • 最后的荷载工况(L11)是来自所有 CRP 工况的最大组合工况,以在所有蠕变工况下获得最大应力或荷载。

荷载
工况


定义


名称

应力
类型

组合
方法

L1

W+T1+P1

操作工况条件 1

OPE

未定义

L2

W+T2+P2

操作工况条件 2

OPE

未定义

L3

W+T2+P1

操作工况条件 3

OPE

未定义

L4

W+P1

持续工况条件 1

SUS

未定义

L5

W+P2

持续工况条件 2

SUS

未定义

L6

L1-L4

膨胀工况条件 1

EXP

代数法(Algebraic)

L7

L2-L5

膨胀工况条件 2

EXP

代数法(Algebraic)

L8

L3-L4

膨胀工况条件 3

EXP

代数法(Algebraic)

L9

L5+L7

SUS L5,以及 L5 到 L2 的 EXP 范围之间的蠕变工况

CRP

标量法(Scalar)

L10

L4+L8

SUS L4,以及 L4 到 L3 的 EXP 范围之间的蠕变工况

CRP

标量法(Scalar)

L11

L9, L10

最大蠕变工况

CRP

最大值(Max)